CompactLogix Communication Modules
Home News

Exploring the ABB DSAO130 57210001-FG Analog Output Unit

Exploring the ABB DSAO130 57210001-FG Analog Output Unit

October 11,2024
Exploring the ABB DSAO130 57210001-FG Analog Output Unit

Overview of the DSAO130 Analog Output Unit
The ABB DSAO130 57210001-FG Analog Output Unit is a sophisticated control module tailored for industrial automation systems. With its ability to provide multiple analog output channels, this unit facilitates precise control and adjustment of output signals, making it a vital component in various applications. Its reliable performance and versatile interface design ensure consistent operation across different environments, making it ideal for sectors like manufacturing, process control, and energy management.

High-Performance Specifications
The DSAO130 is designed to deliver high-quality performance, featuring 16 analog output channels. Each channel supports outputs of 0-10V and 0-20mA, with an accuracy of 0.4%. This level of precision allows users to meet the specific demands of diverse devices and applications, enhancing overall system efficiency.

Compact Design and Dimensions
One of the advantages of the DSAO130 unit is its compact size, making it easy to integrate into existing systems. Here are its dimensions:
Depth / Length: 324 mm
Height: 18 mm
Width: 225 mm
Weight: 0.45 kg
This lightweight design does not compromise its functionality, allowing for easy installation in a variety of industrial settings.

Applications in Industry
Versatile Use Cases
The ABB DSAO130 is widely applicable across different sectors. Its robust features make it suitable for:
Manufacturing: Streamlining operations by providing precise control over machinery.
Process Control: Enhancing system performance in chemical and food processing industries.
Energy Management: Assisting in efficient power distribution and monitoring.
These applications highlight the DSAO130’s adaptability and importance in modern industrial automation.

Installation and Configuration
Getting Started
Installing and configuring the DSAO130 Analog Output Unit is straightforward. The user manual provides comprehensive instructions, including detailed wiring diagrams to facilitate a smooth setup process. By following these guidelines, users can quickly integrate the unit into their existing systems without complications.

Conclusion

The ABB DSAO130 57210001-FG Analog Output Unit is an essential tool for achieving high-performance control in industrial automation. Its precise output capabilities, compact design, and versatility make it a top choice for professionals looking to enhance their systems. With straightforward installation and a wide range of applications, the DSAO130 is a reliable solution for modern industrial challenges.

ABB

S200-TB2 S200TB2

ABB

CMA112 3DDE300013

ABB

DSAI155A 3BSE014162R1

ABB

PM592-ETH  1SAP150200R0271

ABB

086339-001

ABB

IMFEC11

ABB

TC530 3BUR000101R1

ABB

3HNA007719-001 3HNA006145-001

ABB

DTCA711A 61430001-WN

ABB

3BHE043576R0011 UNITROL 1005-0011

ABB

3BHE006805R0001 DDC779 BE01

ABB

209630R2 B4LAA

ABB

TU842 3BSE020850R1

ABB

3BHE024855R0101 UFC921 A101

ABB

PM875-2 3BDH000606R1

ABB

PM151 3BSE003642R1

ABB

PFUK105  YM110001-SF

ABB

3HNM09846-1

ABB

YXO116 4890024-LC

ABB

DSMB116  5736 0001-EB

ABB

YXO126 4890024-UN  YXO 126

ABB

GJR5143000R0002 35AA92C-E

ABB

IMMFP03

ABB

NMBP-01

ABB

AI890 3BSC690071R1

ABB

216DB61 HESG324063R100 HESG216882/A

ABB

HENF209568R0001 P3LB

ABB

IDS-DTU51

ABB

07KT92 GJR5250500R0902

ABB

AI635 3BHT300032R1

ABB

CT302A GJR2167200R0001

ABB

DSDO115 57160001-NF

ABB

3BHE027632R0101

ABB

07AA60R1 GJV3074365R1

ABB

SK-U1-PS1-H1

ABB

HENF209636R0001 G4AE

ABB

HESG324490R1/E 316NG65

ABB

TA524 1SAP180600R0001

ABB

YT296000-MZ  YXU149B  YXU 149B

ABB

SC510 3BSE003832R1


News & Blogs

  • Getting to Know the Yokogawa ASS9881 DE-02 Module 26/09

    2025

    Getting to Know the Yokogawa ASS9881 DE-02 Module
    Introduction In today's industrial automation landscape, the accuracy and operational stability of analog signal processing directly determine production process efficiency and on-site safety. Yokogawa Electric's ASS9881 DE-02 analog I/O module is a specialized component developed specifically for high-precision analog input and output, seamlessly integrating into various complex industrial control systems. The module utilizes a 24V DC power supply and incorporates a dedicated voltage conversion circuit to stabilize the input voltage to 5V DC, providing power for the core signal processing unit. Furthermore, its redundant backup power supply automatically switches to the main power supply in the event of fluctuations or even brief interruptions, ensuring uninterrupted module operation. This makes it an ideal component for critical industrial applications such as petrochemicals and nuclear power. Combined with its compact design, robust environmental protection, and customizable signal range, the ASS9881 DE-02 demonstrates exceptional adaptability for precise analog signal control.  Core Competitiveness of the ASS9881 DE-02 Module The ASS9881 DE-02 module significantly improves the operational efficiency and stability of industrial control systems with its numerous unique features. Its core advantages are primarily reflected in the following aspects: The module's primary highlight is its ultra-high measurement accuracy. Its ±0.1% accuracy level minimizes errors in the transmission and reception of process signals. In industrial production, even a 0.5% measurement deviation can lead to product scrapping or equipment damage in scenarios such as precise chemical dosing and closed-loop pressure control in high-pressure pipelines. Therefore, this accuracy rating serves as a "safety barrier" for critical processes. Also noteworthy is its multi-signal compatibility. The module supports multiple signal types, including ±10V voltage signals, 0–20 mA, and 4–20 mA current signals, allowing users to flexibly configure the module based on the signal requirements of field sensors and actuators. This "all-compatible" feature eliminates the need for additional signal converters, simplifies system wiring, and reduces signal loss and latency associated with conversion. In terms of interference resistance, the module utilizes 1500V RMS channel-to-ground isolation technology, effectively shielding against strong electromagnetic interference, surge voltages, and other interference sources found in industrial environments. This ensures pristine signal fidelity even in high-noise electrical environments, often crowded with motors and inverters. Furthermore, its response speed exceeds 5 milliseconds, enabling instantaneous capture of sudden changes in process variables. This is crucial for automated production lines requiring dynamic adjustments, such as high-speed filling and real-time batching. In terms of environmental adaptability, the ASS9881 DE-02 meets IP67 p...
    All News
  • A Mid-Autumn Festival Surprise in the Dice - Moore Automation Happy Dice Dice Day 26/09

    2025

    A Mid-Autumn Festival Surprise in the Dice - Moore Automation Happy Dice Dice Day
    In this beautiful season of autumn, bringing refreshing coolness and reunions, Moore Automation hosted a unique Mid-Autumn Festival (Mid-Autumn Festival) event. Company colleagues gathered together to share the warmth of the festival and the joy of teamwork. The event began with everyone busy arranging gifts for each table. The exquisite small gifts, neatly arranged on the tables, were colorful and varied, filling every colleague with anticipation. Seeing the neatly arranged and beautiful gifts, everyone's faces lit up with excitement as they discussed their potential prizes. Then, the thrilling game of Bo Bing began. The dice tumbled across the table, making a crisp clinking sound. Every roll of the dice held everyone's breath in anticipation. Laughter and exclamations echoed, creating a lively atmosphere. Each round of Bo Pian was filled with excitement and excitement. Who would win the top prize, the ultimate winner of the table, became the focus of everyone's attention. In the Bo Bing round, the top scorers from each table gathered together to compete for the title of King of Kings. Everyone took turns rolling the dice, a mixture of excitement and tension, accompanied by continuous applause. Finally, when the winner emerged, he held a generous gift, his face beaming with joy, and the entire audience cheered him on. After the event, everyone gathered together for a meal. The fragrant food and lively conversation filled the entire Mid-Autumn Festival evening with warmth and joy. Amidst the laughter and joy, everyone not only felt the joy of the festival but also drew closer together, strengthening team cohesion. This Moore Automation Mid-Autumn Festival cookie-drawing event not only brought festive joy but also became an unforgettable moment in our company culture. The full moon brought families together, and the bond between us deepened. Everyone welcomed a brighter future with laughter.
    All News
  • ABB SAFUR 80F500 Braking Resistor: Technical Features and Industrial Implementation 17/09

    2025

    ABB SAFUR 80F500 Braking Resistor: Technical Features and Industrial Implementation
    Introduction Within industrial drive systems, effective management of deceleration energy represents a crucial operational requirement. The ABB SAFUR 80F500 braking resistor addresses this need by providing a robust solution for dissipating regenerative energy in motor control applications. This component ensures system stability while protecting drive components from voltage irregularities during braking cycles. Fundamental Principles of Dynamic Braking Dynamic braking resistors serve as energy dissipation devices that convert unwanted regenerative power into thermal energy. During motor deceleration, the electromechanical system functions as a generator, producing electricity that elevates the DC bus voltage. Without proper management, this energy accumulation can trigger protective shutdowns or cause component stress. These resistors create a controlled power dissipation path, enabling efficient motor braking while maintaining bus voltage within safe operating limits. Their implementation proves particularly valuable in applications demanding frequent speed changes or load reversal conditions. Product Series Overview: SAFUR Design Philosophy The SAFUR product family embodies ABB's engineering approach to braking resistance, emphasizing operational security and thermal reliability. These units incorporate advanced materials and construction techniques to ensure consistent performance under demanding industrial conditions. Manufactured with attention to thermal management and electrical safety, the series offers adaptable solutions for various drive configurations. The product design prioritizes compatibility while maintaining mechanical and electrical integrity throughout its service life. Technical Profile: SAFUR 80F500 Specifications The 80F500 model demonstrates specific engineering characteristics that make it suitable for medium-power applications: Electrical Parameters: 80-ohm resistance value with 500-watt continuous power dissipation capacity Voltage Compatibility: Designed for 400V AC industrial power systems with 500V DC dielectric strength Thermal Performance: Class F insulation system permits operation at elevated temperatures Environmental Adaptation: Operational from -25°C to +70°C ambient temperature range Response Characteristics: 0.5 millisecond voltage rise time capability Implementation Scenarios and Use Cases This braking resistor finds application across multiple industries where controlled deceleration is required: Industrial Automation: Robotic positioning systems and automated assembly equipment Material Processing: Conveyor synchronization and processing line coordination Power Transmission: Pump and fan drive systems requiring controlled stopping Manufacturing Systems: Production machinery with cyclic operation patterns Installation Guidelines and Operational Considerations Proper implementation requires attention to several technical aspects: Thermal Management: Ensure adequate airflow around the resistor body with mi...
    All News
  • GE DS200SLCCG1ACC LAN Communication Card: A Reliable Connectivity Solution for Harsh Industrial Environments 10/09

    2025

    GE DS200SLCCG1ACC LAN Communication Card: A Reliable Connectivity Solution for Harsh Industrial Environments
    Introduction In the field of industrial automation and control, equipment reliability is not just a basic requirement but also key to ensuring continuous production. The stable operation of complex systems such as General Electric's (GE) Mark Vie turbine control platform relies on high-performance communication components capable of operating continuously under extreme conditions. The GE DS200SLCCG1ACC LAN Communication Card is one such core component designed for these scenarios. This article details the functional features, model designation, and practical application value of this communication card in industrial environments. Core Role of LAN Communication Cards in Industrial Systems LAN communication cards play a vital role in industrial control systems. They serve not only as a bridge between control cabinets and external network devices but also facilitate the real-time transmission of operational data, status signals, and control commands. Unlike commercial network adapters, industrial-grade communication cards must possess anti-interference capabilities, resistance to harsh environments, and long-term operational stability. Such cards are typically used to connect engineering stations, operator interfaces, and high-level monitoring systems, forming the foundation for remote diagnostics and centralized control. Interpretation of the DS200SLCCG1ACC Model The model designation "DS200SLCCG1ACC" carries specific meanings: "DS200" indicates that the card belongs to the Speedtronic Mark Vie product series; "SLC" can be interpreted as System Loop Control or communication management functionality; "CG1ACC" distinguishes the hardware version or specific configuration. Complete model identification is crucial during maintenance and replacement to avoid compatibility issues caused by version mismatches. Environmental Adaptability Design of the GE DS200SLCCG1ACC This communication card reflects GE's high standards in industrial equipment design, with environmental parameters significantly outperforming those of commercial-grade products: An operating temperature range of -40°C to +70°C enables adaptability to various climatic conditions, from extreme cold to high heat; A storage temperature range extended to -40°C to +85°C ensures component safety during transportation and non-operational states; Support for non-condensing humidity environments of 5% to 95% effectively handles dry or humid working conditions. These features allow it to be deployed directly in various industrial settings without relying on additional temperature control facilities. Typical Application Scenarios This communication card is primarily used in GE Mark Vie turbine control systems, commonly in the following scenarios: Real-time control of gas and steam turbines for power generation; Coordinated operation of multiple units in combined cycle power plants; Process industries and energy sectors requiring high-reliability communication. By stably transmitting critical parameters ...
    All News
  • ControlEdge™ HC900: A Future-Oriented Intelligent Process Control Solution 09/10

    2025

    ControlEdge™ HC900: A Future-Oriented Intelligent Process Control Solution
    Introduction The evolving trend in industrial automation demands control systems that are not only stable and highly accurate, but also flexible and scalable to accommodate processes of varying scale and complexity. Honeywell's ControlEdge™ HC900 process controller is designed precisely to address these challenges. It excels in thermal process control and complex unit operation management, and is widely used in industries such as pharmaceuticals, fine chemicals, biofuels, and energy. It is particularly well-suited for intelligent control of high-energy-consuming equipment such as boilers, kilns, and dryers. This article will examine the product's definition, operating mechanism, and practical application value, and, through real-world case studies and data analysis, demonstrate how the HC900 can help companies improve production efficiency, reduce energy consumption, and achieve regulatory compliance. What is the ControlEdge™ HC900? The HC900 controller, part of the ControlEdge 900 series, is a multifunctional platform that integrates continuous process control, logic and sequential control, and safety management. Compared to traditional architectures that require multiple independent controllers, the HC900 enables hybrid control through a unified platform, significantly reducing hardware costs and ongoing maintenance. Its design highlights lie in its modularity and scalability: The number of input/output points can be flexibly configured, supporting expansion from dozens to thousands; It can serve both small pilot plants and large continuous production facilities; It provides a graphical configuration tool, reducing engineering programming workload and shortening overall project cycles by approximately 40%. At the application level, a pharmaceutical company implemented the HC900 in its reactor system to uniformly control temperature and agitation. The result was a stable temperature control accuracy of ±0.1°C, effectively ensuring drug quality and complying with strict industry regulations. How does it work? The HC900 is designed as a hybrid controller capable of both fine-tuning continuous variables (such as temperature and flow) and handling sequential logic operations (such as batch production switching), making it suitable for diverse scenarios across multiple industries. Hardware and Computing Power Utilizing a high-performance processor, it can scan over 25,000 I/O points per second. It offers a variety of I/O modules, supporting analog, digital, and specialized signal input and output. It easily connects to various field instruments, sensors, and actuators. Data Acquisition and Storage A built-in historical data logger stores large amounts of process variables for extended periods and supports retrospective data analysis. This capability provides a basis for predictive maintenance. For example, a chemical plant used the HC900's historical trend data for diagnostics and saw a 15% reduction in unplanned downtime. Network Communication and S...
    All Blogs
  • ABB System Synergy: A Blueprint for Modern Collaboration 24/09

    2025

    ABB System Synergy: A Blueprint for Modern Collaboration
    The Open Architecture Legacy of ABB Advant OCS ABB Advant OCS revolutionized industrial automation through its pioneering open architecture design. This innovative control system broke down traditional barriers in process automation by enabling seamless integration with equipment from multiple vendors. The system's modular design allowed plants to implement tailored solutions that could evolve with changing production needs. By establishing standardized communication protocols, Advant OCS created a foundation for true interoperability, demonstrating how open systems outperform closed proprietary solutions in flexibility and long-term viability. Network Resilience with ABB Bailey INFI 90 Building on this foundation, ABB Bailey INFI 90 introduced groundbreaking network architecture that redefined reliability in industrial environments. The system's distributed intelligence and peer-to-peer communication capabilities through its INFI-NET loop created a self-healing network infrastructure. This design ensured continuous operation even during component failures, providing unprecedented uptime for critical processes. The INFI 90's redundant architecture and fault-tolerant design established new benchmarks for system resilience, showing how distributed collaboration creates stronger operational frameworks. Operational Harmony through ABB Procontic The ABB Procontic series advanced these concepts by creating unified operational environments that harmonized engineering and maintenance functions. This platform integrated previously disparate functions into a cohesive workflow, significantly reducing engineering effort and minimizing operational errors. Procontic's consistent human-machine interface across all system levels enabled smoother operations and faster decision-making. The system demonstrated that true efficiency comes not just from individual component performance, but from the seamless integration of all operational aspects. The Collaboration Imperative in System Design These ABB systems collectively emphasize a crucial engineering truth: excellence emerges from collaborative design. Each platform showcases how intentional architecture for connectivity and interoperability produces superior outcomes. This technical reality mirrors organizational dynamics - systems that facilitate open communication, redundancy of skills, and shared purpose consistently outperform siloed alternatives. The evolution from OCS to Procontic illustrates how each generation built upon previous innovations while maintaining backward compatibility, much like successful teams honor institutional knowledge while embracing new methodologies. Building Human Networks Inspired by Technical Systems The principles embedded in ABB's system architecture provide valuable insights for team development. Just as these industrial platforms prioritize reliable connections and redundant pathways, effective teams require robust communication channels and cross-functional capabilities. Act...
    All Blogs
  • Rethinking DCS - The Role of Distributed Control Systems in Industrial Intelligence 22/09

    2025

    Rethinking DCS - The Role of Distributed Control Systems in Industrial Intelligence
    Introduction Industrial production is shifting from traditional manual monitoring to highly automated and digitalized processes. While pursuing higher production efficiency and safer operations, manufacturers, energy plants, and chemical companies also need to collect, analyze, and manage massive amounts of process data in real time. This is why the Distributed Control System (DCS) emerged. Through a layered structure and network communication, it integrates distributed equipment and complex processes into a centrally manageable, flexibly scalable automation platform, becoming a crucial foundation for the digitalization of process industries. Core Concepts and System Architecture of a DCS A DCS, commonly known as a distributed control system in China, divides the production site into several control nodes. The nearest control unit collects data, executes control logic, and then transmits it to a higher-level monitoring platform via a high-speed network, enabling unified management of all plant-wide equipment. Its key features include: Distributed processing: Each field controller operates independently, reducing the risk of single points of failure. Centralized monitoring: A central operation station provides real-time visibility into process status, alarms, and trend curves. Hierarchical Management: Forming a layered architecture from the field instrumentation layer to the process control layer, and then to the management and decision-making layer. Flexible Configuration: Supports rapid adjustment of control strategies and process displays to meet changing production needs. This design makes DCS more suitable for large and complex process scenarios than earlier single-loop instrumentation systems, and is particularly widely adopted in the chemical, power, petrochemical, and metallurgical industries. Comparison with Traditional Control Methods 1. Clear Advantages High Reliability and Security With redundant CPUs, dual-network ring communication, and modular backup, DCS significantly reduces production downtime caused by control failures. For example, after upgrading to a redundant architecture, a petrochemical plant saw its annual unplanned downtime drop by 60%, reducing direct losses by nearly 4 million yuan. Centralized Operations and Remote Visualization Operators can monitor data from thousands of measurement points on an integrated interface, quickly identifying anomalies and reducing the number of manual inspections. Using a DCS platform, one power plant reduced the number of inspection personnel by approximately one-fifth, saving approximately 2 million yuan in annual labor costs. Flexible Expansion and Easy Maintenance Adding new production lines requires only expanding control modules or adding communication nodes, eliminating the need for extensive rewiring. A polymer plant reduced overall renovation costs by approximately 30% during capacity expansion, while also shortening the project cycle by over two weeks. 2. Challenges High Initia...
    All Blogs
  • The Evolution of GE Control and Excitation Systems: A Technological Journey 12/09

    2025

    The Evolution of GE Control and Excitation Systems: A Technological Journey
    The SPEEDTRONIC™ Legacy: Foundations of Turbine Control GE's SPEEDTRONIC™ platform established unprecedented standards in turbine management, beginning with the pioneering Mark I and Mark II systems. These initial digital control architectures revolutionized power generation through enhanced operational reliability and performance metrics. The technological progression continued through Marks III, IV, and V, with each generation introducing superior computational capabilities, refined reliability parameters, and more sophisticated control methodologies. The Mark V configuration particularly set industry benchmarks with its distributed architecture and triple-modular redundant processing for critical protection functions. This evolutionary pathway established the fundamental principles for contemporary turbine management systems, highlighting GE's dedication to engineering excellence and operational security within power generation environments. Contemporary Control Architectures: Mark VI and Mark VIe Platforms Advancing from established technological foundations, GE launched the Mark VI and subsequent Mark VIe systems, embodying the current generation of turbine management technology. The Mark VI platform incorporated sophisticated networking capabilities, enhanced diagnostic features, and improved human-machine interface components. Its successor, the Mark VIe, introduced a transformative distributed control framework utilizing Ethernet-based network structures and modular design elements. This architecture provides exceptional flexibility, scalability, and integration potential while maintaining the rigorous protection protocols that characterized earlier SPEEDTRONIC™ implementations. Both systems deliver comprehensive management solutions for gas and steam turbines, enabling operators to maximize performance, reliability, and operational efficiency across diverse power generation scenarios. Excitation System Advancement: EX2000 to EX2100e Platforms GE's excitation technology evolved alongside their control systems, with the EX2000 establishing fundamental parameters for modern generator excitation technology. The EX2100 series introduction marked substantial technological progress, delivering enhanced performance characteristics and operational reliability. The subsequent EX2100e excitation architecture represents current technological leadership, incorporating advanced digital control algorithms, refined thyristor technology, and superior communication capabilities. These systems ensure precise voltage regulation, advanced protection functionality, and seamless interoperability with GE's turbine control platforms. The progression from EX2000 through EX2100 to EX2100e demonstrates GE's continuous innovation in excitation technology, guaranteeing optimal generator performance and network stability. Drive System Technology: LCI and GE Drive Solutions GE's drive system portfolio, including the innovative LCI (Load Commutated Inverter) Innovation ...
    All Blogs
leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

Our hours

Mon 11/21 - Wed 11/23: 9 AM - 8 PM
Thu 11/24: closed - Happy Thanksgiving!
Fri 11/25: 8 AM - 10 PM
Sat 11/26 - Sun 11/27: 10 AM - 9 PM
(all hours are Eastern Time)
Contact Us:+ 86 180 30235313

Home

Products

whatsApp

Contact Us